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Abstract A numerical study of heat transfer enhancement due to the deformation of droplets at
high Reynolds numbers is described. The two phase-flow has been computed with a 3D DNS
program using the volume-of-fluid method. The droplets are deformed because of the surrounding
gas stream especially due to a sudden rise of flow velocity from zero to Ui. As the governing
non-dimensional parameter the Weber number of the droplets has been varied between 1.3 and
10.8 by assuming different surface tensions at Reynolds numbers between 360 and 853. The
dynamical behavior of the droplets as a function of the Weber and the Ohnsorge number are in
good agreement with experimental results from the literature. At the highest Reynolds number
Re¼ 853, a significant dependency of Nu on We has been found. The comparison of a Nusselt
number computed with the real surface area with a Nusselt number computed with the spherical
surface area shows that the heat transfer increases not only due to the droplet motion but also due
to the larger surface area of the deformed droplet.

Introduction
The process of heat transfer between a disperse and continuous phase is an
important multiphase flow problem in evaporating systems with numerous
practical applications, e.g. industrial sprays in gas turbines and automotive
engines, among others. Because of the high velocities in these applications the
disperse phase is deformed by the aerodynamic forces of the continuous phase.
The mentioned flow regime in the present simulation occurs after the primary
breakup in a spray. Then the droplets from the dense core region were moved
to the outer region of the spray. The velocity of the outer region is much smaller
than the velocity in the core region which is driven by the injection pressure.
Therefore, the droplets are strongly decelerated and due to this the deformation
and breakup of the liquid droplets occur.

The process can be studied experimentally by shock tube experiments
(Hsiang and Faeth, 1992, 1995). In the study of Hsiang and Faeth, only the
deformation and breakup without heat transfer has been the topic of interest.
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Non-dimensional parameters characterizing this mechanism are the Weber
number We, specifying the intensity of kinetic forces relative to the stabilizing
surface tension forces, and the Ohnsorge number Oh, quantifying the effect of
internal viscous forces relative to the surface tension forces

We ¼
U 2D0rG

s
; Oh ¼

mLffiffiffiffiffiffiffiffiffiffiffiffiffi
rLD0s

p :

where the subscripts L and G indicate the liquid gaseous phases, respectively.
Furthermore U, r, m, s and D0 are the relative velocity between droplet and gas
stream, the density, the dynamic viscosity, the surface tension and the
spherical diameter of the droplet, respectively. In dependency of Weber and
Ohnsorge number, Hsiang and Faeth specify the transition between different
deformation and breakup regimes. These results have been used as a validation
of the droplet deformation. The breakup regimes are not the topic of this
present study. The breakup gives only an upper limit for the Weber number.
The critical Weber number for sudden shock loading is given by Wecrit < 13
under the restriction of negligible viscosity effects Oh , 0:2 (Hsiang and
Faeth, 1995).

Up to now the heat transfer from deformed disperse particles in high
Reynolds number flow ðRe . 270Þ has been studied rarely, because of the fully
3D, transient flow regime which has been considered. Most authors who dealt
with this topic paid attention to only one of the two problems of high Reynolds
number or fully 3D flow and deformation.

Nguyen et al. (1993) computed the transient heat transfer of a spherical,
liquid droplet with a hybrid spectral scheme. The study of Feng and
Michaelides (2000, 2001) dealt only with heat transfer at high Reynolds
numbers but without deformation of the liquid phase. The convective heat
transfer of non-spherical solid particle has been investigated numerically by
Comer and Kleinstreuer (1995). Their study is limited to Reynolds numbers
between 40 and 120. Haywood et al. (1994) computed the transient heat transfer
and evaporation of deformed droplets at intermediate Reynolds numbers
ð10 , Re , 100Þ with transient, axisymmetic deformation using a finite
volume based numerical technique. Other publications from the same research
group and with same numerical approach (Haywood et al., 1989; Renksizbulut
and Haywood, 1998) dealt with spherical, evaporating droplets.

Experimental studies on heat transfer from liquid droplets especially for
deformed droplets are very rare. Up to now, the correlation of Ranz and
Marshall (1952) is used for the computation of heat transfer coefficients of
spherical or deformed droplets.

In the present study, the influence of transient deformation on the heat
transfer has been investigated numerically at high Reynolds numbers with
a fully 3D approach and no restriction on the deformation of the disperse
phase.
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The efficiency of the program for the computation of the dynamics of
strongly deformed droplets has been presented by Rieber and Frohn (1999).
The validation of the energy equation is reported in Hase and Weigand (2001).

Analysis and numerical method
The inhouse 3D CFD program, free surface 3D (FS3D), has been developed to
compute the Navier-Stokes equations for incompressible flow with free
surfaces. The equations are solved without using a turbulence model with
direct numerical simulation (DNS). The governing equations for momentum
and mass transport are

›ðruÞ

›t
þ 7 · ½ðruÞ^u� ¼ 27pþ 7 ·m½7uþ ð7uÞT� þ 7 ·Tcs ð1Þ

7 ·u ¼ 0; ð2Þ

where Tcs is the capillary stress tensor which adds the surface tensor force to
the momentum equation. Furthermore, u and p are the velocity vector and
pressure, respectively.

Additionally, the energy equation is solved. For the above mentioned
incompressible flow and for a fluid with constant fluid properties in each phase,
the energy equation is decoupled from the equations of motion. Therefore, the
energy equation can be solved after the computation of the flow field. The
energy equation has been implemented in the temperature form

›

›t
ðrcpTÞ þ 7 · ðrcpuTÞ ¼ 7 · ðk7TÞ þF: ð3Þ

where T is the thermodynamic temperature, cp the specific heat at constant
pressure and k the heat conductivity. The dissipation term F can be neglected
for all mentioned flows due to the low Eckert number.

In two phase flows, additional information about the interface position
between the disperse and the continuous phase is required. There are two
different approaches to manage this task. The first one is the explicit tracking
of the interface (front-tracking) and the other the tracking of the disperse phase
(volume-tracking). In FS3D, a volume-tracking method, well known as the
volume-of-fluid (VOF) method, is used (Hirt and Nichols, 1981). In the
VOF-method, an additional transport equation

›f

›t
þ 7 · ðuf Þ ¼ 0 ð4Þ

for the volume fraction of the disperse phase is solved. The variable f is called
the VOF-variable. The VOF-variable is
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f ¼

0 in the continuous phase

0 , f , 1 at the interface

1 in the disperse phase

8>><
>>:

ð5Þ

With the VOF-variable the change of the fluid properties across the interface
can be computed by using the equations

rðx; tÞ ¼ rd þ ðrc 2 rdÞf ðx; tÞ ð6Þ

mðx; tÞ ¼ md þ ðmc 2 mdÞf ðx; tÞ ð7Þ

where the subscripts c and d indicate the continuous disperse phases,
respectively. Additional fluid properties like the specific heat cp and the heat
conductivity k are obtained in the same way with the VOF-variable. To ensure
a sharp interface and to suppress numerical dissipation of the disperse phase in
each time step, the interface is reconstructed by using the piecewise linear
interface reconstruction computation (PLIC) method (Rider and Kothe, 1998).
After the reconstruction, the disperse phase is transported on the basis of the
reconstructed distribution of the disperse phase.

The spatial discretization is realized by a structured finite volume scheme on
a staggered grid. In each phase, the discretization is second-order accurate.
Because of the high gradients over the interface, a limiter is used to prevent the
generation of oscillations and spurious solutions. The program is parallelized
with domain decomposition using the communication library MPI. A multigrid
solver is included to solve the Poisson equation for the pressure. The features of
the program with the description of the solution algorithm has been reported
by Rieber (1999). Additionally a coordinate transformation from the inertial
system to the droplet system is implemented (Rieber et al., 2000) to track the
droplet for a longer time without generating very large computational domains.

Simulation results
Computational domain and fluid properties
In the present simulations, the liquid has been assumed to have the properties of
water at 208C except for the dynamic viscosity and the surface tension. The
dynamic viscosity is mL ¼ 10 £ mH2O ¼ 1 £ 1023 kg=ðmsÞ and the surface
tension can be taken from Table I. The higher viscosity has been chosen to avoid
parasitic currents (Scardovelli and Zaleski, 1999). As mentioned earlier, for the
surrounding gas the properties of air has been assumed. The initial temperature
of the liquid was TL ¼ 350 K and TG ¼ 293:15 K for the gaseous phase.

The computational domain is displayed in Figure 1. The 3D channel
geometry for a droplet with the diameter D ¼ 2 £ 1023 m is x ¼ 24 £ 1023 m;
y ¼ 12 £ 1023 m and z ¼ 12 £ 1023 m: For other droplet diameters, the channel
size has been chosen in a similar way to obtain the same geometric ratios
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between droplet diameter and channel length. The gravitational force acts in
the negative x-direction. The inlet boundary is on the left with a constant inflow
velocity and temperature Ui, T i ¼ TG ¼ T1: On the right, an outlet boundary
with an additional damping zone is placed. The damping zone avoids backflow
into the computational domain. At the other boundaries, Dirichlet boundary
conditions for the y- and z-velocities v ¼ w ¼ 0 and Neumann boundary
conditions for the x-velocity ðdu=dxÞW ¼ 0 are used.

The initial droplet shape is spherical without a deformation due to the
surrounding gas stream. Hence, the droplet receives something like a strike
from the first approaching flow. This condition is similar to the condition in the
shock tube of Hsiang and Faeth (1995) and it leads also to an initial deformation

D0 (mm) U0 (m/s) s £ 1023 (N/m) Re ¼ U 0D0rG=mG We ¼U 2
0D0rG=s Oh ¼ mL=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rLD0s

p

1.2 4.5 22.0 360 1.33 6.15 £ 1022

1.2 4.5 12.0 360 2.43 8.33 £ 1022

1.2 4.5 6.0 360 4.86 0.117
1.2 4.5 3.5 360 8.33 0.154
1.2 4.5 3.0 360 9.72 0.166
1.2 4.5 2.8 360 10.41 0.172

1.5 5.2 36.0 520 1.35 4.30 £ 1022

1.5 5.2 20.0 520 2.43 5.77 £ 1022

1.5 5.2 10.0 520 4.86 8.18 £ 1022

1.5 5.2 5.9 520 8.25 0.106
1.5 5.2 5.0 520 9.73 0.115
1.5 5.2 4.5 520 10.82 0.122

2.0 6.4 73.0 853 1.35 2.62 £ 1022

2.0 6.4 40.0 853 2.46 3.52 £ 1022

2.0 6.4 20.0 853 4.92 5.00 £ 1022

2.0 6.4 12.0 853 8.19 6.45 £ 1022

2.0 6.4 10.0 853 9.83 7.07 £ 1022

2.0 6.4 9.0 853 10.92 7.45 £ 1022

Table I.
Summary of simulation

conditions

Figure 1.
Channel geometry and

boundary conditions for
the computation of

droplet diameter
D ¼ 2 £ 1023 m
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and oscillation of the droplet. The amplitude of the deformation and the
number of oscillation periods depend on the Weber and the Ohnsorge numbers.

Deformation of the droplet
First, the dynamic behavior of the droplets is studied. The deformation rate
shown as a ratio of A/A0, where A is the surface area of the deformed droplet
and A0 the surface area of a spherical droplet with the same volume, is
displayed in Figure 2 for the Reynolds number Re ¼ 853: The deformation is
plotted in dependency of the Fourier number Fo ¼ taG=R

2
0 which is a

non-dimensional time. A summary of the simulation conditions and the
non-dimensional parameters Re and Oh is given in Table I.

Because of the higher kinetic energy proportional to the surface tension
forces of the flow described by the higher Weber number, the droplets with
higher Weber numbers are deformed much more from the first approaching
flow. For a Weber number We ¼ 10:9; the ratio of the surface areas is A=A0 ¼
1:175 for the first oscillation in prolate shape. For We ¼ 4:9; the deformation is
still A=A0 ¼ 1:04 and only A=A0 ¼ 1:01 for We ¼ 1:35: After this strong, first
deformation (for the higher Weber numbers) in the oblate direction, the droplet
oscillates to a nearly spherical shape and back to an oblate shape. Without a
second time oscillating through the spherical state, the droplet stays in the
oblate deformation state with only small changes. These changes occur due to
the highly transient flow around the droplet. At this time the surface tension
force is not able to form a spherical droplet against the aerodynamic forces
from the surrounding flow. This behavior – the strongest deformation due to
the initial approaching flow, an oscillation to the spherical state and then back
to the oblate deformation – can only be seen for the Weber numbers We ¼ 9:8
and 10.9.

To point out the deformation regime of a droplet with a higher Weber
number the droplet shape for We ¼ 9:8 is shown in Figure 3(a) with the
surrounding velocity field and in Figure 3(b) with the temperature and
the velocity field. In Figure 3(a) and (b), a cut from the 3D geometry through

Figure 2.
Non-dimensional ratio
A/A0 in dependency of
the time Fo. The black
marks are the times in
Figure 3
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the center of the droplet in the xy-plane is displayed. The influence of the
deformation regime on the temperature field will be discussed later. The
respective times of Figure 3(a) and (b) are marked by the black circles in
Figure 2 for We ¼ 9:8:

For the first displayed droplet shape at Fo ¼ 0:0014; the maximum
deformation in oblate direction is reached. The ratio of the deformed to the
spherical surface area is A=A0 < 1:14 (Figure 2). The displayed flow field

Figure 3.
Velocity and temperature
fields around a deformed
droplet with the diameter

D ¼ 2 mm in
dependency of Fo
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around the droplet is at this time nearly symmetrical, which is mainly an effect
from the initial conditions of the velocity. However, it has although taken into
account that the droplet motion influences the nearby flow field very much.
This can be seen from the high velocities in the recirculation zone behind the
droplet which are pointing to the rear side of the droplet. At Fo ¼ 0:0028; the
droplet reaches a nearly spherical shape again. Only in the front the droplet is
flattened. After the displayed state, the droplet oscillates back to an oblate
deformation period. In Figure 3, at Fo ¼ 0:0056, the transition region between
the oblate and final shapes is displayed. It can also be seen that the flow field at
this time is fully 3D. The final shape is shown for Fo ¼ 0:0224: In both figures,
the flattening in front of the droplet can be observed. This flattening occurs in
agreement with Hsiang and Faeth (1995) who found “dome-shaped” drops for
this range of Weber and Ohnsorge numbers.

For lower Weber numbers We ¼ 1:3; 2.45, 4.9 and 8.2, the droplet oscillation
is different from the behavior described before. For the Weber numbers We ¼
9:8 and 10.9, the oscillation continues only for two periods without reaching a
prolate droplet shape. For the other Weber numbers from 1.35 to 8.2 the
oscillations continue and only for We ¼ 8:2 a nearly steady deformation
reaches at Fo < 0:025 for the displayed time interval. Additionally, the
droplets oscillate between an oblate and a prolate deformation. The reason for
this is the higher surface tension force for these cases which introduces a larger
kinetic energy into the liquid phase. This energy is able to deform the droplet
from the spherical state to the prolate or oblate deformation state, respectively.
The oscillation for We ¼ 4:9 continues over the whole time without a
significant damping. For We ¼ 2:45 and 1.35, the oscillation is not damped
completely during the displayed time interval but the amplitudes are very
small and hardly visible.

In Figure 3(b), the temperature and the velocity field of the deformed droplet
and the surrounding gas are displayed. To make the temperature difference in
the gas stream visible the temperature scale is chosen between 293 and 312 K in
spite of a droplet temperature of 350 K. Hence the droplet and the nearby region
are shown in black for T . 312 K: At Fo ¼ 0:0014; a temperature decrease in
the gas stream can be seen at the edge of the disc and behind the disc in the
center of the recirculation zone. For Fo ¼ 0:0056 and 0.0224, the fully 3D
character of the flow and temperature fields are visible.

Heat transfer computation
After the investigation of the droplet deformation due to the surrounding gas
stream the influence of the deformation on the heat transfer has been studied.
To perform this study a time and space averaged Nusselt number

Num ¼
D0aa

kG
ð8Þ
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has been computed from the temperature evolution in the simulations. The heat
transfer coefficient aa has been obtained from the energy balance

2rLVcv;L
›Tm

›t
¼ 2A0aaðTW;m 2 T1Þ; ð9Þ

where cv is the specific heat at constant volume, Tm the averaged droplet
temperature, TW,m a time and space averaged wall temperature and T1

denotes the temperature in the undisturbed gas flow. The subscript 0 indicates
the initial (spherical) state of the surface area A and diameter D. Explained in
discrete values the heat transfer coefficient aa has been computed according to

aa ¼
rLVcv;L

A0ðTW;m 2 T1Þ

DTm

Dt
: ð10Þ

It has to be noted that because of the short time scales in this study the
displayed Num is far away from the thermal fully developed state Nu1: For
example, the Nusselt number from the correlation given by Ranz and Marshall
(1952) for Re ¼ 853 and Pr ¼ 0:714 is Nu1 ¼ 17:5: The present study deals not
with the simulation of this Nu1 for long time periods but only with the strongly
transient period for droplet dynamic and heat transfer at the beginning of this
process. Therefore, in Figure 4, at Fo ¼ 0:03 there is no level asymptote in the
Nusselt number evolution. The Nusselt number decreases further on, but with a
much smaller gradient. In many applications this first time period is of great
importance due to the short time scale and the strong transient behavior of the
whole process.

In Figure 4, the evolution of Num in dependency of Fo for three different
Reynolds numbers Re ¼ 360; 520 and 853 is depicted. The Weber number has
been varied between 1:3 # We # 10:8 in the simulations. It has been found
that for all Reynolds numbers, the heat transfer depends on the Weber number.
For the shown time interval, Num increases with increasing Weber numbers.
The dependency becomes stronger for higher Weber numbers and higher
Reynolds numbers in most cases. Because of the improvements in the computer
program, the Nusselt numbers in Figure 4 for the higher Weber numbers and
larger times (Fo) are different from the one shown by Hase and Weigand (2002).
One of the present improvements eliminated a programming error which
resulted in slight deviations in the computation of the Nusselt number for
highly dynamical processes. For the highest Reynolds number Re ¼ 853; the
dependency is more pronounced. The Nusselt numbers differ from Num < 22:5
ðWe ¼ 1:35Þ to Num < 27 ðWe ¼ 10:9Þ which is a difference of about
20 percent. At Fo < 0:005; the influence of the deformation can be seen with
a maximum in Num for We ¼ 4:9; 8.2, 9.8, and 10.9. In comparison with the
non-dimensional surface area from Figure 2 at approximately this time the
second maximum occurs also in the surface area evolution. The maximum in
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the Nusselt number evolution occurs because the first maximum in the
deformation has cut due to the chosen Nusselt number interval. (It will be
shown in Figure 5 for We ¼ 10:8 and Re ¼ 853 that this peak occurs.) The
peaks from Num in Figure 4 appear at earlier times for lower Weber numbers
which is also in agreement with the behavior of the deformation shown in
Figure 2 for the surface area. For Re ¼ 520; the dependency of Num(We) is also
clear for most Weber numbers. Only for We ¼ 9:8 and 8.2, the curves of Num

reach the same value. A reason for this can be the eigenfrequency of the droplet
which is very close to the stimulation frequency from the flow. The difference
in the Nusselt numbers is about 14.3 percent (NumðWe ¼ 1:3Þ < 17:5;
NumðWe ¼ 10:9Þ < 20). The influence of the deformation can be seen in the
Nusselt number evolution for We ¼ 8:2; 9.8 and 10.9 as well. For Re ¼ 360;
the dependency Num(We) is not so pronounced but all Nusselt numbers show
the expected evolution. The difference in the Nusselt numbers is 13.3 percent

Figure 4.
Time and space
averaged Nusselt
number Num in
dependency of Fo for
different Reynolds and
Weber numbers
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(NumðWe ¼ 1:3Þ < 15; NumðWe ¼ 10:9Þ < 17). It should be pointed out that
the thermal boundary layer around the droplet is not resolved fine enough in the
present computations ð128 £ 64 £ 64Þ: This could give rise to changes in the
Nusselt number. However, a study will be carried out in the future to
investigate the difference in the Nusselt number for much finer grids. Here it is
presently unclear, if a fully grid independent calculation with high enough
resolution of the thermal boundary layer can be received at the supercomputers
in Stuttgart. First test indicates a systematic deviation of about # 20 percent.
The present results are qualitatively correct.

Another interesting phenomenon is the peak in the shape of the Nusselt
number evolution for high Weber numbers which can be seen in Figure 4 for
Re ¼ 520 and We ¼ 10:8 at Fo ¼ 0:003 and which appears also at Re ¼ 853 at
the same Weber number (Figure 5). Here it has been considered that in equation
(8), the surface area of the spherical droplet A0 is used. The important question
in this context is if this maximum occurs only due to the increased surface area
of the deformed droplet A or if the heat transfer is enhanced also from the
droplet motion and the flow regime. To investigate this problem in more detail,
the heat transfer coefficient in equation (8) has been computed according to

aa ¼
rLVcv;L

AðTW;m 2 T1Þ

DTm

Dt
; ð11Þ

where A is the real surface area of the deformed droplet. With this heat transfer
coefficient, the Nusselt number is computed, which is shown in Figure 5 in
comparison with the Nusselt number computed by equation (8) with A0 for
different Reynolds numbers and We ¼ 10:8: As expected, the Nusselt numbers
computed with the real surface area A are smaller than the Nusselt numbers
computed with A0 for both Reynolds numbers. But the most important result
from Figure 5 is that the maximum in the Nusselt number evolution occurs also
for the Nusselt number computed with the real surface area. This points out
that the Nusselt number in this case is enhanced also due to the droplet
oscillation and the flow regime which results from this oscillation.

Figure 5.
Evolution of the Nusselt
number computed with

the real surface of the
deformed droplet A and

the surface of a spherical
droplet A0 in dependency

of Fo for two Reynolds
numbers
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Finally, the dependency of the Nusselt number on the Reynolds number has
been investigated. For the present study, it has been assumed that Nu , Reb:
The exponent b has been calculated from the Nusselt numbers shown in
Figure 4. The results are displayed in Figure 6 as a function of Fo for different
Weber numbers. All values of b are in the expected range of Nu , Re1=2 which
is the well known dependency for steady-state flows from the literature (Ranz
and Marshall, 1952). For We ¼ 9:8 and the comparison of the Nusselt number
evolution for Re ¼ 853 and 360 the largest values of b have been found for
Fo $ 0:005: In comparison with the value We ¼ 1:3 for the same Reynolds
numbers this is the expected behavior from Figure 4. The values of b for the
change in the Nusselt number between Re ¼ 360 and 520 are significantly
smaller. It is interesting that b differs not very much for We ¼ 1:3 but for
We ¼ 9:8 between the two Reynolds number intervals. Furthermore it is
interesting to note that the exponent b is nearly constant for a given Weber
number for Fo $ 0:01: The reason for this deviation at early times are the
maxima in the Nusselt number evolutions which do not occur later. Because of
the different oscillation time of the droplets which appear because of the change
in the surface tension these maxima occur at various times for the different
Reynolds and Weber numbers.

Concluding remarks
An inhouse 3D CFD program (FS3D) has been modified and used to compute
the heat transfer for deformed droplets at high Reynolds numbers. The
deformation regimes of the droplets are in good agreement with experimental
data from literature. The results for the heat transfer show the dependency of
the Nusselt number on the Weber number. The dependency becomes stronger
for higher Reynolds numbers. Furthermore, it is shown that the Nusselt
number for deformed droplets is enhanced not only due to the droplet
oscillation and the flow regime, which results from this oscillation, but also due
to the larger surface area of the deformed droplets. The present study will be
extended to a longer time scale in future work. A wider range of Reynolds
number will be investigated as well.

Figure 6.
Exponent b for
Nu , Reb as a function
of Fo for different Weber
numbers. The Reynolds
numbers denote which
Nusselt numbers
evolutions are compared
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